dae.pheno.prepare package

Submodules

dae.pheno.prepare.measure_classifier module

class dae.pheno.prepare.measure_classifier.Convertible(value, names=None, *, module=None, qualname=None, type=None, start=1, boundary=None)[source]

Bases: Enum

nan = 0
non_numeric = 2
numeric = 1
class dae.pheno.prepare.measure_classifier.InferenceReport(*, value_type: type, histogram_type: type[NullHistogram | CategoricalHistogram | NumberHistogram], min_individuals: int, count_total: int, count_with_values: int, count_without_values: int, count_unique_values: int, min_value: float | int | None, max_value: float | int | None, values_domain: str)[source]

Bases: BaseModel

Inference results report.

count_total: int
count_unique_values: int
count_with_values: int
count_without_values: int
histogram_type: type[NullHistogram | CategoricalHistogram | NumberHistogram]
max_value: float | int | None
min_individuals: int
min_value: float | int | None
model_computed_fields: ClassVar[dict[str, ComputedFieldInfo]] = {}

A dictionary of computed field names and their corresponding ComputedFieldInfo objects.

model_config: ClassVar[ConfigDict] = {}

Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].

model_fields: ClassVar[dict[str, FieldInfo]] = {'count_total': FieldInfo(annotation=int, required=True), 'count_unique_values': FieldInfo(annotation=int, required=True), 'count_with_values': FieldInfo(annotation=int, required=True), 'count_without_values': FieldInfo(annotation=int, required=True), 'histogram_type': FieldInfo(annotation=type[Union[NullHistogram, CategoricalHistogram, NumberHistogram]], required=True), 'max_value': FieldInfo(annotation=Union[float, int, NoneType], required=True), 'min_individuals': FieldInfo(annotation=int, required=True), 'min_value': FieldInfo(annotation=Union[float, int, NoneType], required=True), 'value_type': FieldInfo(annotation=type, required=True), 'values_domain': FieldInfo(annotation=str, required=True)}

Metadata about the fields defined on the model, mapping of field names to [FieldInfo][pydantic.fields.FieldInfo].

This replaces Model.__fields__ from Pydantic V1.

value_type: type
values_domain: str
dae.pheno.prepare.measure_classifier.convert_to_float(value: int | float | str | None) float | None[source]
dae.pheno.prepare.measure_classifier.convert_to_int(value: int | float | str | None) int | None[source]
dae.pheno.prepare.measure_classifier.convert_to_numeric(val: Any) float | float64[source]

Convert passed value to float.

dae.pheno.prepare.measure_classifier.convert_to_string(val: Any) str | None[source]

Convert passed value to string.

dae.pheno.prepare.measure_classifier.determine_histogram_type(report: InferenceReport, config: InferenceConfig) type[NullHistogram | CategoricalHistogram | NumberHistogram][source]

Given an inference report and a configuration, return histogram type.

dae.pheno.prepare.measure_classifier.force_type_inference(values: list[str | None], config: InferenceConfig) tuple[list[float | None] | list[int | None] | list[str | None], InferenceReport][source]

Perform type inference when a type is forced.

dae.pheno.prepare.measure_classifier.inference_reference_impl(values: list[str | None], config: InferenceConfig) tuple[list[float | None] | list[int | None] | list[str | None], InferenceReport][source]

Infer value and histogram type for a list of values.

dae.pheno.prepare.measure_classifier.is_convertible_to_numeric(val: Any) Convertible[source]

Check if the passed string is convertible to number.

dae.pheno.prepare.measure_classifier.is_nan(val: Any) bool[source]

Check if the passed value is a NaN.

Module contents