Source code for dae.import_tools.import_tools

from __future__ import annotations

import logging
import os
import pathlib
import sys
import time
from abc import ABC, abstractmethod
from collections.abc import Callable, Generator
from copy import deepcopy
from dataclasses import dataclass
from functools import cache
from typing import Any, cast

import yaml
from box import Box

from dae.annotation.annotation_factory import (
    AnnotationPipeline,
    build_annotation_pipeline,
)
from dae.configuration.gpf_config_parser import GPFConfigParser
from dae.configuration.schemas.import_config import (
    embedded_input_schema,
    import_config_schema,
)
from dae.genomic_resources.reference_genome import ReferenceGenome
from dae.genotype_storage.genotype_storage import GenotypeStorage
from dae.genotype_storage.genotype_storage_registry import (
    GenotypeStorageRegistry,
)
from dae.gpf_instance import GPFInstance
from dae.parquet.partition_descriptor import (
    PartitionDescriptor,
)
from dae.pedigrees.families_data import FamiliesData
from dae.pedigrees.loader import FamiliesLoader
from dae.task_graph.graph import TaskGraph
from dae.utils import fs_utils
from dae.utils.statistics import StatsCollection
from dae.variants_loaders.cnv.loader import CNVLoader
from dae.variants_loaders.dae.loader import DaeTransmittedLoader, DenovoLoader
from dae.variants_loaders.raw.loader import (
    AnnotationPipelineDecorator,
    VariantsLoader,
)
from dae.variants_loaders.vcf.loader import VcfLoader

logger = logging.getLogger(__name__)


[docs] @dataclass(frozen=True) class Bucket: """A region of the input used for processing.""" type: str region_bin: str regions: list[str] index: int def __str__(self) -> str: regions = ";".join(r or "all" for r in self.regions) if not regions: regions = "all" return f"Bucket({self.type},{self.region_bin},{regions},{self.index})"
[docs] class ImportProject: """Encapsulate the import configuration. This class creates the necessary objects needed to import a study (e.g. loaders, family data and so one). """ # pylint: disable=too-many-public-methods def __init__( self, import_config: dict[str, Any], base_input_dir: str | None, base_config_dir: str | None = None, gpf_instance: GPFInstance | None = None, config_filenames: list[str] | None = None) -> None: """Create a new project from the provided config. It is best not to call this ctor directly but to use one of the provided build_* methods. :param import_config: The parsed, validated and normalized config. :param gpf_instance: Allow overwiting the gpf instance as described in the configuration and instead injecting our own instance. Ideal for testing. """ self.import_config: dict[str, Any] = import_config if "denovo" in import_config.get("input", {}): len_files = len(import_config["input"]["denovo"]["files"]) assert len_files == 1, "Support for multiple denovo files is NYI" self._base_input_dir = base_input_dir self._base_config_dir = base_config_dir or base_input_dir self._gpf_instance = gpf_instance self.config_filenames = config_filenames or [] self.stats: StatsCollection = StatsCollection() self._input_filenames_cache: dict[str, list[str]] = {}
[docs] @staticmethod def build_from_config( import_config: dict[str, Any], base_input_dir: str = "", gpf_instance: GPFInstance | None = None, ) -> ImportProject: """Create a new project from the provided config. The config is first validated and normalized. :param import_config: The config to use for the import. :base_input_dir: Default input dir. Use cwd by default. """ import_config = GPFConfigParser.validate_config( import_config, import_config_schema) normalizer = ImportConfigNormalizer() base_config_dir = base_input_dir import_config, base_input_dir, external_files = \ normalizer.normalize(import_config, base_input_dir) return ImportProject( import_config, base_input_dir, base_config_dir, gpf_instance=gpf_instance, config_filenames=external_files, )
[docs] @staticmethod def build_from_file( import_filename: str | os.PathLike, gpf_instance: GPFInstance | None = None) -> ImportProject: """Create a new project from the provided config filename. The file is first parsed, validated and normalized. The path to the file is used as the default input path for the project. :param import_filename: Path to the config file :param gpf_instance: Gpf Instance to use. """ base_input_dir = fs_utils.containing_path(import_filename) import_config = GPFConfigParser.parse_and_interpolate_file( import_filename, conf_dir=base_input_dir) project = ImportProject.build_from_config( import_config, base_input_dir, gpf_instance=gpf_instance) # the path to the import filename should be the first config file project.config_filenames.insert(0, str(import_filename)) return project
[docs] def get_pedigree_params(self) -> tuple[str, dict[str, Any]]: """Get params for loading the pedigree.""" families_filename = self.get_pedigree_filename() families_params = {} families_params.update(FamiliesLoader.cli_defaults()) config_params = self.import_config["input"]["pedigree"] config_params = self._add_loader_prefix(config_params, "ped_") families_params.update(config_params) return families_filename, families_params
[docs] def get_pedigree_filename(self) -> str: """Return the path to the pedigree file.""" families_filename = self.import_config["input"]["pedigree"]["file"] families_filename = fs_utils.join(self.input_dir, families_filename) return cast(str, families_filename)
[docs] def get_pedigree_loader(self) -> FamiliesLoader: families_filename, families_params = self.get_pedigree_params() return FamiliesLoader( families_filename, **families_params, )
[docs] def get_pedigree(self) -> FamiliesData: """Load, parse and return the pedigree data.""" families_loader = self.get_pedigree_loader() return families_loader.load()
[docs] def get_variant_loader_types(self) -> set[str]: """Collect all variant import types used in the project.""" result = set() for loader_type in ["denovo", "vcf", "cnv", "dae"]: config = self.import_config["input"].get(loader_type) if config is not None: result.add(loader_type) return result
[docs] def has_denovo_variants(self) -> bool: """Check if the resulting imported study has denovo variants.""" if "denovo" in self.get_variant_loader_types(): return True if "vcf" in self.get_variant_loader_types(): _, variants_params = \ self.get_variant_params("vcf") if variants_params.get("vcf_denovo_mode") == "denovo": return True return False
[docs] def get_variant_loader_chromosomes( self, loader_type: str | None = None) -> list[str]: """Collect all chromosomes available in input files.""" loader_types = self.get_variant_loader_types() if loader_type is not None: if loader_type not in loader_types: return [] loader_types = {loader_type} chromosomes = set() for ltype in loader_types: loader = self.get_variant_loader(loader_type=ltype) chromosomes.update(loader.chromosomes) return [ chrom for chrom in self.get_gpf_instance().reference_genome.chromosomes if chrom in chromosomes ]
[docs] def get_variant_loader_chrom_lens( self, loader_type: str | None = None) -> dict[str, int]: """Collect all chromosomes and their length available in input files.""" all_chrom_lens = dict( self.get_gpf_instance().reference_genome.get_all_chrom_lengths()) return {chrom: all_chrom_lens[chrom] for chrom in self.get_variant_loader_chromosomes(loader_type)}
[docs] def get_import_variants_buckets(self) -> list[Bucket]: """Split variant files into buckets enabling parallel processing.""" buckets: list[Bucket] = [] for loader_type in ["denovo", "vcf", "cnv", "dae"]: config = self.import_config["input"].get(loader_type, None) if config is not None: buckets.extend(self._loader_region_bins(loader_type)) return buckets
[docs] def get_variant_loader( self, bucket: Bucket | None = None, loader_type: str | None = None, reference_genome: ReferenceGenome | None = None, ) -> VariantsLoader: """Get the appropriate variant loader for the specified bucket.""" if bucket is None and loader_type is None: raise ValueError("loader_type or bucket is required") if bucket is not None: loader_type = bucket.type assert loader_type is not None loader = self._get_variant_loader(loader_type, reference_genome) if bucket is not None and bucket.region_bin != "all": loader.reset_regions(bucket.regions) return loader
[docs] def get_input_filenames(self, bucket: Bucket) -> list[str]: """Get a list of input files for a specific bucket.""" # creating a loader is expensive so cache the results if bucket.type not in self._input_filenames_cache: loader = self.get_variant_loader(bucket) self._input_filenames_cache[bucket.type] = loader.filenames return self._input_filenames_cache[bucket.type]
[docs] def get_variant_params( self, loader_type: str, ) -> tuple[str | list[str], dict[str, Any]]: """Return variant loader filenames and params.""" assert loader_type in self.import_config["input"], \ f"No input config for loader {loader_type}" loader_config = self.import_config["input"][loader_type] if loader_type == "vcf" and "chromosomes" in loader_config: # vcf loader expects chromosomes to be in a string separated by ; loader_config = deepcopy(loader_config) loader_config["chromosomes"] = ";".join( loader_config["chromosomes"]) variants_params = self._add_loader_prefix(loader_config, loader_type + "_") variants_filenames = loader_config["files"] variants_filenames = [fs_utils.join(self.input_dir, f) for f in variants_filenames] if loader_type in {"denovo", "dae"}: assert len(variants_filenames) == 1, \ f"Support for multiple {loader_type} files is NYI" variants_filenames = variants_filenames[0] return variants_filenames, variants_params
def _get_variant_loader( self, loader_type: str, reference_genome: ReferenceGenome | None = None, ) -> VariantsLoader: assert loader_type in self.import_config["input"], \ f"No input config for loader {loader_type}" if reference_genome is None: reference_genome = self.get_gpf_instance().reference_genome variants_filenames, variants_params = \ self.get_variant_params(loader_type) loader_cls = { "denovo": DenovoLoader, "vcf": VcfLoader, "cnv": CNVLoader, "dae": DaeTransmittedLoader, }[loader_type] loader: VariantsLoader = loader_cls( self.get_pedigree(), variants_filenames, params=variants_params, genome=reference_genome, ) self._check_chrom_prefix(loader, variants_params) return loader
[docs] def get_partition_descriptor(self) -> PartitionDescriptor: """Return the partition descriptor as described in the config.""" if "partition_description" not in self.import_config: return PartitionDescriptor() config_dict: dict = self.import_config["partition_description"] partition_descriptor = PartitionDescriptor.parse_dict(config_dict) if partition_descriptor.has_region_bins(): reference_genome = self.get_gpf_instance().reference_genome partition_descriptor.chromosomes = [ chrom for chrom in partition_descriptor.chromosomes if chrom in reference_genome.chromosomes ] return partition_descriptor
[docs] def get_gpf_instance(self) -> GPFInstance: """Create and return a gpf instance as desribed in the config.""" if self._gpf_instance is not None: return self._gpf_instance instance_config = self.import_config.get("gpf_instance", {}) instance_dir = instance_config.get("path") if instance_dir is None: config_filename = None else: config_filename = fs_utils.join( instance_dir, "gpf_instance.yaml") self._gpf_instance = GPFInstance.build(config_filename) return self._gpf_instance
[docs] def get_import_storage(self) -> ImportStorage: """Create an import storage as described in the import config.""" storage_type = self._storage_type() return self._get_import_storage(storage_type)
@staticmethod @cache def _get_import_storage(storage_type: str) -> ImportStorage: factory = get_import_storage_factory(storage_type) return factory() @property def work_dir(self) -> str: """Where to store generated import files (e.g. parquet files).""" return cast( str, self.import_config.get("processing_config", {}).get("work_dir", ""), ) @property def include_reference(self) -> bool: """Check if the import should include ref allele in the output data.""" return cast( bool, self.import_config.get("processing_config", {}).get( "include_reference", False)) @property def input_dir(self) -> str: """Return the path relative to which input files are specified.""" assert self._base_input_dir is not None return fs_utils.join( self._base_input_dir, self.import_config["input"].get("input_dir", ""), ) @property def study_id(self) -> str: return cast(str, self.import_config["id"])
[docs] def get_processing_parquet_dataset_dir(self) -> str | None: """Return processing parquet dataset dir if configured and exists.""" processing_config = self.import_config.get("processing_config", {}) parquet_dataset_dir = processing_config.get("parquet_dataset_dir") if parquet_dataset_dir is None: return None if not fs_utils.exists(parquet_dataset_dir): return None return cast(str, parquet_dataset_dir)
[docs] def get_parquet_dataset_dir(self) -> str: """Return parquet dataset direcotry. If processing parquet dataset dir is configured this method will return it. Otherwise it will construct work dir parquet dataset directory. """ parquet_dataset_dir = self.get_processing_parquet_dataset_dir() if parquet_dataset_dir is not None: return parquet_dataset_dir return fs_utils.join(self.work_dir, self.study_id)
[docs] def has_genotype_storage(self) -> bool: """Return if a genotype storage can be created.""" if not self._has_destination(): return True # Use default genotype storage if "storage_type" not in self.import_config["destination"]: return True # External genotype storage # Embedded configuration # storage_type is the only property in destination # this is a special case and we assume there is no genotype storage return len(self.import_config["destination"]) > 1
[docs] def get_genotype_storage(self) -> GenotypeStorage: """Find, create and return the correct genotype storage.""" explicit_config = ( self._has_destination() and "storage_id" not in self.import_config["destination"] ) if not explicit_config: gpf_instance = self.get_gpf_instance() genotype_storages: GenotypeStorageRegistry = \ gpf_instance.genotype_storages storage_id = self.import_config.get("destination", {})\ .get("storage_id", None) if storage_id is not None: return genotype_storages.get_genotype_storage(storage_id) return genotype_storages.get_default_genotype_storage() # explicit storage config registry = GenotypeStorageRegistry() return registry.register_storage_config( self.import_config["destination"])
def _has_destination(self) -> bool: """Return if there is a *destination* section in the import config.""" return "destination" in self.import_config
[docs] def get_row_group_size(self) -> int: res = self.import_config \ .get("processing_config", {}) \ .get("parquet_row_group_size", 50_000) return cast(int, res)
[docs] def build_variants_loader_pipeline( self, variants_loader: VariantsLoader, ) -> VariantsLoader: """Create an annotation pipeline around variants_loader.""" annotation_pipeline = self.build_annotation_pipeline() if annotation_pipeline is not None: variants_loader = cast( VariantsLoader, AnnotationPipelineDecorator( variants_loader, annotation_pipeline, )) return variants_loader
def _storage_type(self) -> str: if not self._has_destination(): # get default storage schema from GPF instance gpf_instance = self.get_gpf_instance() storage: GenotypeStorage = gpf_instance\ .genotype_storages.get_default_genotype_storage() return storage.storage_type destination = self.import_config["destination"] if "storage_id" in destination: storage_id = destination["storage_id"] gpf_instance = self.get_gpf_instance() storage = gpf_instance\ .genotype_storages\ .get_genotype_storage(storage_id) return storage.storage_type return cast(str, destination["storage_type"]) @staticmethod def _get_default_bucket_index(loader_type: str) -> int: return { "denovo": 0, "vcf": 100_000, "dae": 200_000, "cnv": 300_000, }[loader_type] @staticmethod def _add_loader_prefix( params: dict[str, Any], prefix: str) -> dict[str, Any]: res = {} exclude = {"add_chrom_prefix", "del_chrom_prefix", "files"} for k, val in params.items(): if k not in exclude: res[prefix + k] = val else: res[k] = val return res
[docs] @staticmethod def del_loader_prefix( params: dict[str, Any], prefix: str) -> dict[str, Any]: """Remove prefix from parameter keys.""" res = {} for k, val in params.items(): if val is None: continue key = k if k.startswith(prefix): key = k[len(prefix):] res[key] = val return res
def _loader_region_bins( self, loader_type: str) -> Generator[Bucket, None, None]: # pylint: disable=too-many-locals reference_genome = self.get_gpf_instance().reference_genome loader = self._get_variant_loader(loader_type, reference_genome) loader_chromosomes = loader.chromosomes target_chromosomes = self._get_loader_target_chromosomes(loader_type) if target_chromosomes is None: target_chromosomes = loader_chromosomes # cannot use self.get_partition_description() here as the # processing region length might be different than the region length # specified in the parition description section of the import config processing_region_length = \ self._get_processing_region_length(loader_type) processing_descriptor = PartitionDescriptor( chromosomes=target_chromosomes, region_length=processing_region_length, # type: ignore ) processing_config = self._get_loader_processing_config(loader_type) mode = None if isinstance(processing_config, str): mode = processing_config elif len(processing_config) == 0: mode = "single_bucket" # default mode when missing config if mode == "single_bucket": processing_regions: dict[str, list[str]] = {"all": []} elif mode == "chromosome": processing_regions = { chrom: [chrom] for chrom in loader_chromosomes} else: assert mode is None processing_regions = { chrom: [str(r) for r in regions] for chrom, regions in processing_descriptor .make_region_bins_regions( chromosomes=loader_chromosomes, chromosome_lengths=reference_genome .get_all_chrom_lengths(), ).items() } default_bucket_index = self._get_default_bucket_index(loader_type) for index, (region_bin, regions) in enumerate( processing_regions.items()): assert index <= 100_000, f"Too many buckets {loader_type}" bucket_index = default_bucket_index + index yield Bucket( loader_type, region_bin, regions, bucket_index, ) def _get_processing_region_length(self, loader_type: str) -> int | None: processing_config = self._get_loader_processing_config(loader_type) if isinstance(processing_config, str): return None return cast(int, processing_config.get("region_length", sys.maxsize)) def _get_loader_target_chromosomes( self, loader_type: str) -> list[str] | None: processing_config = self._get_loader_processing_config(loader_type) if isinstance(processing_config, str): return None processing_chromsomes = processing_config.get("chromosomes", None) if processing_chromsomes is None: return None reference_genome = self.get_gpf_instance().reference_genome return [ chrom for chrom in processing_chromsomes if chrom in reference_genome.chromosomes ] def _get_loader_processing_config( self, loader_type: str) -> dict[str, Any]: return cast( dict[str, Any], self.import_config.get("processing_config", {}).get( loader_type, {})) @staticmethod def _check_chrom_prefix( loader: VariantsLoader, variants_params: dict[str, Any]) -> None: prefix = variants_params.get("add_chrom_prefix") if prefix: all_already_have_prefix = True for chrom in loader.chromosomes: # the loader should have already added the prefix assert chrom.startswith(prefix) if not chrom[len(prefix):].startswith(prefix): all_already_have_prefix = False break if all_already_have_prefix and len(loader.chromosomes): raise ValueError( f"All chromosomes already have the prefix {prefix}. " "Consider removing add_chrom_prefix.", ) prefix = variants_params.get("del_chrom_prefix") if prefix: try: # the chromosomes getter will assert for us if the prefix # can be removed or not. If there is no prefix to begin with # we will get an assertion error loader.chromosomes # noqa: B018 except AssertionError as exp: raise ValueError( f"Chromosomes already missing the prefix {prefix}. " "Consider removing del_chrom_prefix.", ) from exp
[docs] def get_annotation_pipeline_config( self, ) -> list[dict]: """Return the annotation pipeline configuration.""" gpf_instance = self.get_gpf_instance() if "annotation" not in self.import_config: # build default annotation pipeline as described in the gpf return construct_import_annotation_pipeline_config(gpf_instance) annotation_config = self.import_config["annotation"] if "file" in annotation_config: # pipeline in external file assert self._base_config_dir is not None annotation_config_file = fs_utils.join( self._base_config_dir, annotation_config["file"], ) return construct_import_annotation_pipeline_config( gpf_instance, annotation_configfile=annotation_config_file, ) return cast(list[dict], annotation_config)
[docs] def build_annotation_pipeline(self) -> AnnotationPipeline: config = self.get_annotation_pipeline_config() gpf_instance = self.get_gpf_instance() return build_annotation_pipeline(config, gpf_instance.grr)
def __str__(self) -> str: return f"Project({self.study_id})" def __getstate__(self) -> dict[str, Any]: """Return state of object used for pickling. The state is the default state but doesn't include the _gpf_instance as this property is transient. """ gpf_instance = self.get_gpf_instance() state = self.__dict__.copy() del state["_gpf_instance"] state["_gpf_dae_config"] = gpf_instance.dae_config state["_gpf_dae_dir"] = gpf_instance.dae_dir return state def __setstate__(self, state: dict[str, Any]) -> None: """Set state of object after unpickling.""" self.__dict__.update(state) self._gpf_instance = GPFInstance( state["_gpf_dae_config"], state["_gpf_dae_dir"])
[docs] class ImportConfigNormalizer: """Class to normalize import configs. Most of the normalization is done by Cerberus but it fails short in a few cases. This class picks up the slack. It also reads external files and embeds them in the final configuration dict. """
[docs] def normalize( self, import_config: dict, base_input_dir: str) -> tuple[dict[str, Any], str, list[str]]: """Normalize the import config.""" config = deepcopy(import_config) base_input_dir, external_files = self._load_external_files( config, base_input_dir, ) self._map_for_key(config, "region_length", self._int_shorthand) self._map_for_key(config, "chromosomes", self._normalize_chrom_list) if "parquet_row_group_size" in config.get("processing_config", {}): group_size_config = \ config["processing_config"]["parquet_row_group_size"] if group_size_config is None: del config["processing_config"]["parquet_row_group_size"] else: config["processing_config"]["parquet_row_group_size"] = \ self._int_shorthand(group_size_config) return config, base_input_dir, external_files
@classmethod def _load_external_files( cls, config: dict, base_input_dir: str) -> tuple[str, list[str]]: external_files: list[str] = [] base_input_dir = cls._load_external_file( config, "input", base_input_dir, embedded_input_schema, external_files, ) if "file" in config.get("annotation", {}): # don't load the config just add it to the list of external files external_files.append(config["annotation"]["file"]) return base_input_dir, external_files @staticmethod def _load_external_file( config: dict, section_key: str, base_input_dir: str, schema: dict, external_files: list[str]) -> str: if section_key not in config: return base_input_dir sub_config = config[section_key] while "file" in sub_config: external_fn = fs_utils.join(base_input_dir, sub_config["file"]) external_files.append(external_fn) sub_config = GPFConfigParser.parse_and_interpolate_file( external_fn, ) sub_config = GPFConfigParser.validate_config( sub_config, schema, ) base_input_dir = fs_utils.containing_path(external_fn) config[section_key] = sub_config return base_input_dir @classmethod def _map_for_key( cls, config: dict[str, Any], key: str, func: Callable[[Any], Any]) -> None: for k, val in config.items(): if k == key: config[k] = func(val) elif isinstance(val, dict): cls._map_for_key(val, key, func) @staticmethod def _int_shorthand(obj: str | int) -> int: if isinstance(obj, int): return obj assert isinstance(obj, str) val = obj.strip() unit_suffixes = { "K": 1_000, "M": 1_000_000, "G": 1_000_000_000, } if val[-1].upper() not in unit_suffixes: return int(val) return int(val[:-1]) * unit_suffixes[val[-1].upper()] @classmethod def _normalize_chrom_list(cls, obj: str | list[str]) -> list[str]: if isinstance(obj, list): return cls._expand_chromosomes(obj) assert isinstance(obj, str) chrom_list = list( map(str.strip, obj.split(",")), ) return cls._expand_chromosomes(chrom_list) @staticmethod def _expand_chromosomes(chromosomes: list[str]) -> list[str]: if chromosomes is None: return None res: list[str] = [] for chrom in chromosomes: if chrom in {"autosomes", "autosomesXY"}: for i in range(1, 23): res.extend((f"{i}", f"chr{i}")) if chrom == "autosomesXY": for j in ["X", "Y"]: res.extend((f"{j}", f"chr{j}")) else: res.append(chrom) return res
[docs] class ImportStorage(ABC): """Defines abstract base class for import storages."""
[docs] @abstractmethod def generate_import_task_graph(self, project: ImportProject) -> TaskGraph: """Generate task grap for import of the project into this storage."""
_REGISTERED_IMPORT_STORAGE_FACTORIES: dict[ str, Callable[[], ImportStorage]] = {} _EXTENTIONS_LOADED = False def _load_import_storage_factory_plugins() -> None: # pylint: disable=global-statement global _EXTENTIONS_LOADED if _EXTENTIONS_LOADED: return # pylint: disable=import-outside-toplevel from importlib_metadata import entry_points discovered_entries = entry_points(group="dae.import_tools.storages") for entry in discovered_entries: storage_type = entry.name factory = entry.load() if storage_type in _REGISTERED_IMPORT_STORAGE_FACTORIES: logger.warning("overwriting import storage type: %s", storage_type) _REGISTERED_IMPORT_STORAGE_FACTORIES[storage_type] = factory _EXTENTIONS_LOADED = True
[docs] def get_import_storage_factory( storage_type: str) -> Callable[[], ImportStorage]: """Find and return a factory function for creation of a storage type.""" _load_import_storage_factory_plugins() if storage_type not in _REGISTERED_IMPORT_STORAGE_FACTORIES: raise ValueError(f"unsupported import storage type: {storage_type}") return _REGISTERED_IMPORT_STORAGE_FACTORIES[storage_type]
[docs] def get_import_storage_types() -> list[str]: _load_import_storage_factory_plugins() return list(_REGISTERED_IMPORT_STORAGE_FACTORIES.keys())
[docs] def register_import_storage_factory( storage_type: str, factory: Callable[[], ImportStorage]) -> None: _load_import_storage_factory_plugins() if storage_type in _REGISTERED_IMPORT_STORAGE_FACTORIES: logger.warning("overwriting import storage type: %s", storage_type) _REGISTERED_IMPORT_STORAGE_FACTORIES[storage_type] = factory
[docs] def save_study_config( dae_config: Box, study_id: str, study_config: str, *, force: bool = False) -> None: """Save the study config to a file.""" dirname = os.path.join(dae_config.studies.dir, study_id) filename = os.path.join(dirname, f"{study_id}.yaml") if os.path.exists(filename): logger.info( "configuration file already exists: %s", filename) bak_name = os.path.basename(filename) + "." + str(time.time_ns()) bak_path = os.path.join(os.path.dirname(filename), bak_name) if not force: logger.info( "skipping overwring the old config file... " "storing new config in %s", bak_path) pathlib.Path(bak_path).write_text(study_config) return logger.info( "Backing up configuration for %s in %s", study_id, bak_path) os.rename(filename, bak_path) os.makedirs(dirname, exist_ok=True) pathlib.Path(filename).write_text(study_config)
[docs] def construct_import_annotation_pipeline_config( gpf_instance: GPFInstance, annotation_configfile: str | None = None, ) -> list[dict]: """Construct annotation pipeline config for importing data.""" if annotation_configfile is not None: assert os.path.exists(annotation_configfile), annotation_configfile with open(annotation_configfile, "rt", encoding="utf8") as infile: return cast(list[dict], yaml.safe_load(infile.read())) return gpf_instance.get_annotation_pipeline_config()
[docs] def construct_import_annotation_pipeline( gpf_instance: GPFInstance, annotation_configfile: str | None = None) -> AnnotationPipeline: """Construct annotation pipeline for importing data.""" pipeline_config = construct_import_annotation_pipeline_config( gpf_instance, annotation_configfile) grr = gpf_instance.grr return build_annotation_pipeline(pipeline_config, grr)