Source code for dae.pheno.prepare_data

import logging
import os
from pathlib import Path
from typing import Any, cast

import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from box import Box

from dae.pheno.browser import PhenoBrowser
from dae.pheno.common import MeasureType
from dae.pheno.graphs import (
    draw_categorical_violin_distribution,
    draw_linregres,
    draw_measure_violinplot,
    draw_ordinal_violin_distribution,
)
from dae.pheno.pheno_data import (
    Measure,
    PhenotypeData,
    PhenotypeGroup,
    PhenotypeStudy,
    get_pheno_browser_images_dir,
)
from dae.pheno.pheno_import import IMPORT_METADATA_TABLE, ImportManifest
from dae.pheno.registry import PhenoRegistry
from dae.task_graph.cli_tools import TaskCache, TaskGraphCli
from dae.task_graph.executor import task_graph_run_with_results
from dae.task_graph.graph import TaskGraph
from dae.variants.attributes import Role

mpl.use("PS")
plt.ioff()

logger = logging.getLogger(__name__)


[docs] class PreparePhenoBrowserBase: """Prepares phenotype data for the phenotype browser.""" LARGE_DPI = 150 SMALL_DPI = 16 def __init__( self, phenotype_data: PhenotypeData, browser: PhenoBrowser, output_dir: Path, pheno_regressions: Box | None = None, images_dir: Path | None = None, ) -> None: assert output_dir.exists() self.output_dir = output_dir if images_dir is None: images_dir = Path(get_pheno_browser_images_dir()) if not images_dir.exists(): images_dir.mkdir(exist_ok=True) assert os.path.exists(images_dir) self.images_dir = images_dir self.phenotype_data = phenotype_data self.browser = browser self.pheno_id = self.phenotype_data.pheno_id self.pheno_regressions = pheno_regressions if self.pheno_regressions is not None: for reg_data in self.pheno_regressions.values(): if "measure_names" in reg_data: reg_data["measure_name"] = reg_data["measure_names"][0] @staticmethod def _augment_measure_values_df( phenotype_data: PhenotypeData, augment: Measure, augment_name: str, measure: Measure, ) -> pd.DataFrame | None: assert augment is not None assert isinstance(augment, Measure) augment_instrument = augment.instrument_name augment_measure = augment.measure_name if augment_instrument is not None: augment_id = f"{augment_instrument}.{augment_measure}" else: augment_id = f"{measure.instrument_name}.{augment_measure}" if augment_id == measure.measure_id: return None if not phenotype_data.has_measure(augment_id): return None df = phenotype_data.get_people_measure_values_df( [augment_id, measure.measure_id], ) df.loc[df.role == Role.mom, "role"] = Role.parent # type: ignore df.loc[df.role == Role.dad, "role"] = Role.parent # type: ignore return df.rename(columns={augment_id: augment_name}) @staticmethod def _measure_to_dict(measure: Measure) -> dict[str, Any]: return { "measure_id": measure.measure_id, "instrument_name": measure.instrument_name, "measure_name": measure.measure_name, "measure_type": measure.measure_type.value, "description": measure.description, "values_domain": measure.values_domain, }
[docs] @classmethod def figure_filepath( cls, pheno_id: str, images_dir: str, measure: Measure, suffix: str, ) -> str: """Construct file path for storing a measure figures.""" filename = f"{measure.measure_id}.{suffix}.png" assert measure.instrument_name is not None outdir = os.path.join( images_dir, pheno_id, measure.instrument_name, ) if not os.path.exists(outdir): os.makedirs(outdir, exist_ok=True) return os.path.join(outdir, filename)
[docs] @classmethod def browsable_figure_path( cls, pheno_id: str, measure: Measure, suffix: str, ) -> str: """Construct file path for storing a measure figures.""" filename = f"{measure.measure_id}.{suffix}.png" assert measure.instrument_name is not None return os.path.join( pheno_id, measure.instrument_name, filename, )
[docs] @classmethod def save_fig( cls, pheno_id: str, images_dir: str, measure: Measure, suffix: str, ) -> tuple[str | None, str | None]: """Save measure figures.""" if "/" in measure.measure_id: return (None, None) small_filepath = cls.figure_filepath( pheno_id, images_dir, measure, f"{suffix}_small", ) plt.savefig(small_filepath, dpi=cls.SMALL_DPI) filepath = cls.figure_filepath(pheno_id, images_dir, measure, suffix) plt.savefig(filepath, dpi=cls.LARGE_DPI) plt.close() return ( cls.browsable_figure_path(pheno_id, measure, f"{suffix}_small"), cls.browsable_figure_path(pheno_id, measure, suffix), )
[docs] @classmethod def build_regression( cls, phenotype_data: PhenotypeData, images_dir: str, dependent_measure: Measure, independent_measure: Measure, jitter: float, ) -> dict[str, str | float]: """Build measure regressiongs.""" min_number_of_values = 5 min_number_of_unique_values = 2 res: dict[str, Any] = {} if dependent_measure.measure_id == independent_measure.measure_id: return res aug_col_name = independent_measure.measure_name aug_df = cls._augment_measure_values_df( phenotype_data, independent_measure, aug_col_name, dependent_measure, ) if aug_df is None: return res assert aug_df is not None aug_df = aug_df[aug_df.role == Role.prb] aug_df.loc[:, aug_col_name] = aug_df[aug_col_name].astype(np.float32) aug_df = aug_df[np.isfinite(aug_df[aug_col_name])] assert aug_df is not None if ( aug_df[dependent_measure.measure_id].nunique() < min_number_of_unique_values or len(aug_df) <= min_number_of_values ): return res res_male, res_female = draw_linregres( aug_df, aug_col_name, dependent_measure.measure_id, jitter, # type: ignore ) res["pvalue_regression_male"] = ( res_male.pvalues[1] # type: ignore if res_male is not None else None ) res["pvalue_regression_female"] = ( res_female.pvalues[1] # type: ignore if res_female is not None else None ) if res_male is not None or res_female is not None: ( res["figure_regression_small"], res["figure_regression"], ) = cls.save_fig( phenotype_data.pheno_id, images_dir, dependent_measure, f"prb_regression_by_{aug_col_name}", ) return res
[docs] @classmethod def build_values_violinplot( cls, pheno_id: str, images_dir: str, df: pd.DataFrame, measure: Measure, ) -> dict[str, Any]: """Build a violin plot figure for the measure.""" drawn = draw_measure_violinplot(df.dropna(), measure.measure_id) res = {} if drawn: ( res["figure_distribution_small"], res["figure_distribution"], ) = cls.save_fig(pheno_id, images_dir, measure, "violinplot") return res
[docs] @classmethod def build_values_categorical_distribution( cls, pheno_id: str, images_dir: str, df: pd.DataFrame, measure: Measure, ) -> dict[str, Any]: """Build a categorical value distribution fiugre.""" drawn = draw_categorical_violin_distribution( df.dropna(), measure.measure_id, ) res = {} if drawn: ( res["figure_distribution_small"], res["figure_distribution"], ) = cls.save_fig(pheno_id, images_dir, measure, "distribution") return res
[docs] @classmethod def build_values_ordinal_distribution( cls, pheno_id: str, images_dir: str, df: pd.DataFrame, measure: Measure, ) -> dict[str, Any]: """Build an ordinal value distribution figure.""" drawn = draw_ordinal_violin_distribution( df.dropna(), measure.measure_id, ) res = {} if drawn: ( res["figure_distribution_small"], res["figure_distribution"], ) = cls.save_fig(pheno_id, images_dir, measure, "distribution") return res
def _get_measure_by_name( self, measure_name: str, instrument_name: str, ) -> Measure | None: if instrument_name: measure_id = ".".join([instrument_name, measure_name]) if self.phenotype_data.has_measure(measure_id): return self.phenotype_data.get_measure(measure_id) return None def _has_regression_measure( self, measure_name: str, instrument_name: str | None, ) -> bool: if self.pheno_regressions is None: return False for reg in self.pheno_regressions.values(): if measure_name == reg.measure_name: if ( instrument_name and reg.instrument_name and instrument_name != reg.instrument_name ): continue return True return False
[docs] def collect_child_configs(self, study: PhenotypeGroup) -> dict[str, dict]: configs = {} for child in study.children: if child.config["type"] == "study": configs[child.config["name"]] = child.config elif child.config["type"] == "group": configs[child.config["name"]] = child.config configs.update( self.collect_child_configs(cast(PhenotypeGroup, child)), ) else: raise ValueError( f"Unknown config type {child.config['type']} " f"for {child.config['name']}", ) return configs
[docs] def run(self, **kwargs: Any) -> None: """Run browser preparations for all measures in a phenotype data.""" configurations: dict[str, dict] = {} config = self.phenotype_data.config configurations[config["name"]] = config if config["type"] == "group": group = cast(PhenotypeGroup, self.phenotype_data) configurations.update(self.collect_child_configs(group)) elif config["type"] != "study": raise ValueError( f"Unknown config type {config['type']} for {config['name']}", ) if self.pheno_regressions: for reg_id, reg_data in self.pheno_regressions.items(): self.browser.save_regression( { "regression_id": reg_id, "instrument_name": reg_data.instrument_name, "measure_name": reg_data.measure_name, "display_name": reg_data.display_name, }, ) with self.browser.connection.cursor() as cursor: cursor.execute("CHECKPOINT") graph = TaskGraph() for instrument in list(self.phenotype_data.instruments.values()): for measure in list(instrument.measures.values()): self.add_measure_task(graph, measure, configurations) task_cache = TaskCache.create( force=kwargs.get("force"), cache_dir=kwargs.get("task_status_dir"), ) with TaskGraphCli.create_executor(task_cache, **kwargs) as xtor: try: for result in task_graph_run_with_results(graph, xtor): measure, regressions = result self.browser.save(cast(dict[str, str | None], measure)) if regressions is None: continue for regression in regressions: self.browser.save_regression_values(regression) except Exception as e: logger.exception("Failed to create images") raise RuntimeError("Failed to create images") from e is_group = self.phenotype_data.config["type"] == "group" if is_group: leaves = cast(PhenotypeGroup, self.phenotype_data).get_leaves() else: leaves = [cast(PhenotypeStudy, self.phenotype_data)] manifests = [] for leaf in leaves: leaf_manifest = ImportManifest.from_table( leaf.db.connection, IMPORT_METADATA_TABLE, ) if len(leaf_manifest) == 0: logger.warning("%s has no import manifests", leaf.pheno_id) continue manifests.append(leaf_manifest[0]) ImportManifest.create_table( self.browser.connection, IMPORT_METADATA_TABLE, ) for manifest in manifests: ImportManifest.write_to_db( self.browser.connection, IMPORT_METADATA_TABLE, manifest.import_config, )
[docs] def get_regression_measures( self, measure: Measure, ) -> dict[str, tuple[Box, Measure]]: """Collect all regressions for a given measure.""" regression_measures: dict[str, tuple[Box, Measure]] = {} if self.pheno_regressions is None: return regression_measures for reg_id, reg in self.pheno_regressions.items(): measure_names = reg.measure_names reg_measure = None for measure_name in measure_names: reg_measure = self._get_measure_by_name( measure_name, reg.instrument_name or measure.instrument_name, # type: ignore ) if not reg_measure: continue break if not reg_measure: continue if self._has_regression_measure( measure.measure_name, measure.instrument_name, ): continue regression_measures[reg_id] = (reg, reg_measure) return regression_measures
[docs] def add_measure_task( self, graph: TaskGraph, measure: Measure, pheno_configs: dict[str, dict], ) -> None: regression_measures = self.get_regression_measures(measure) graph.create_task( f"build_{measure.measure_id}", PreparePhenoBrowserBase.do_measure_build, [ self.pheno_id, pheno_configs, measure, self.images_dir, regression_measures, ], [], )
[docs] @classmethod def do_measure_build( cls, pheno_id: str, pheno_configs: dict[str, dict], measure: Measure, images_dir: str, regression_measures: dict[str, tuple[Box, Measure]], ) -> tuple[dict[str, Any], list[dict[str, Any]] | None]: """Create images and regressions for a given measure.""" registry = PhenoRegistry() pheno_data = registry.get_or_load(pheno_id, pheno_configs) df = pheno_data.get_people_measure_values_df( [measure.measure_id], ) measure_dict = PreparePhenoBrowserBase._measure_to_dict(measure) if measure.measure_type == MeasureType.continuous: measure_dict.update(cls.build_values_violinplot( pheno_id, images_dir, df, measure, )) elif measure.measure_type == MeasureType.ordinal: measure_dict.update(cls.build_values_ordinal_distribution( pheno_id, images_dir, df, measure, )) elif measure.measure_type == MeasureType.categorical: measure_dict.update(cls.build_values_categorical_distribution( pheno_id, images_dir, df, measure, )) if len(regression_measures) == 0: return measure_dict, None if measure.measure_type not in [ MeasureType.continuous, MeasureType.ordinal, ]: return measure_dict, None regression_rows = [] for reg_id, reg_conf_and_measure in regression_measures.items(): reg_conf, reg_measure = reg_conf_and_measure res = { "measure_id": measure.measure_id, "regression_id": reg_id, } regression = cls.build_regression( pheno_data, images_dir, measure, reg_measure, reg_conf.jitter, ) res.update(regression) # type: ignore if ( res.get("pvalue_regression_male") is not None or res.get("pvalue_regression_female") is not None ): regression_rows.append(res) return measure_dict, regression_rows