Source code for dae.utils.variant_utils

import logging

import numpy as np
import numpy.typing as npt

from dae.genomic_resources.reference_genome import ReferenceGenome
from dae.variants.attributes import Sex

logger = logging.getLogger(__name__)


GenotypeType = np.int8
BestStateType = np.int8


[docs] def mat2str( mat: np.ndarray | list[list[int]], col_sep: str = "", row_sep: str = "/", ) -> str: """Construct sting representation of a matrix.""" if isinstance(mat, np.ndarray): return row_sep.join( [ col_sep.join([str(n) if n >= 0 else "?" for n in mat[i, :]]) for i in range(mat.shape[0]) ], ) return row_sep.join( [ col_sep.join([str(n) if n >= 0 else "?" for n in mat[i]]) for i in range(len(mat)) ], )
[docs] def str2lists( mat: str, col_sep: str = "", row_sep: str = "/", ) -> list[list[int]]: """Convert a string into a numpy matrix.""" if col_sep == "": return [[int(c) for c in r] for r in mat.split(row_sep)] return [ [int(v) for v in r.split(col_sep)] for r in mat.split(row_sep)]
[docs] def str2mat( mat: str, col_sep: str = "", row_sep: str = "/", dtype: npt.DTypeLike = GenotypeType) -> np.ndarray: """Convert a string into a numpy matrix.""" if col_sep == "": return np.array( [[int(c) for c in r] for r in mat.split(row_sep)], dtype=dtype, ) return np.array( [[int(v) for v in r.split(col_sep)] for r in mat.split(row_sep)], dtype=dtype, )
[docs] def str2mat_adjust_colsep(mat: str) -> np.ndarray: """Convert a string into a numpy matrix.""" col_sep = "" if " " in mat: col_sep = " " return str2mat(mat, col_sep=col_sep)
[docs] def best2gt( best_state: np.ndarray, dtype: npt.DTypeLike = GenotypeType) -> np.ndarray: """Convert a best state array to a genotype array.""" rows, cols = best_state.shape genotype = np.zeros(shape=(2, cols), dtype=dtype) ploidy = np.sum(best_state, 0) for allele_index in range(rows): best_state_row = best_state[allele_index, :] for col in range(cols): if best_state_row[col] == 2: genotype[:, col] = allele_index elif best_state_row[col] == 1: if genotype[0, col] == 0: genotype[0, col] = allele_index if ploidy[col] == 1: genotype[1, col] = -2 else: genotype[1, col] = allele_index return genotype
[docs] def fgt2str(family_genotypes: np.ndarray, sep: str = ";") -> str: """Convert a family genotype array to a string.""" result = [] for genotype in family_genotypes: v_0 = genotype[0] v_1 = genotype[1] if v_0 < 0: v_0 = "." if v_1 < 0: v_1 = "." result.append(f"{v_0}/{v_1}") return sep.join(result)
[docs] def str2fgt(fgt: str) -> np.ndarray: """Convert a string to a family genotype array.""" cols = fgt.split(";") result = np.zeros(shape=(2, len(cols)), dtype=GenotypeType) for idx, col in enumerate(cols): tokens = col.split("/") v_0 = -1 if tokens[0] == "." else int(tokens[0]) v_1 = -1 if tokens[1] == "." else int(tokens[1]) result[0][idx] = v_0 result[1][idx] = v_1 return result
[docs] def gt2str(gt: np.ndarray) -> str: """Convert a genotype array to a string.""" assert gt.shape[0] == 2 result = [] for i in range(gt.shape[1]): v_0 = gt[0, i] v_1 = gt[1, i] if v_0 < 0: v_0 = "." if v_1 < 0: v_1 = "." result.append(f"{v_0}/{v_1}") return ",".join(result)
[docs] def str2gt( genotypes: str, split: str = ",", dtype: npt.DTypeLike = GenotypeType) -> np.ndarray: """Convert a string to a genotype array.""" gts = genotypes.split(split) result = np.zeros(shape=(2, len(gts)), dtype=dtype) for col, pgts in enumerate(gts): vals = [ int(p) if p != "." else -1 for p in pgts.split("/") ] result[0, col] = vals[0] result[1, col] = vals[1] return result
[docs] def reference_genotype(size: int) -> np.ndarray: return np.zeros(shape=(2, size), dtype=GenotypeType)
[docs] def is_reference_genotype(gt: np.ndarray) -> bool: return bool(np.any(gt == 0) and np.all(np.logical_or(gt == 0, gt == -1)))
[docs] def is_all_reference_genotype(gt: np.ndarray) -> bool: return not np.any(gt != 0)
[docs] def is_unknown_genotype(gt: np.ndarray) -> bool: return bool(np.any(gt == -1))
[docs] def is_all_unknown_genotype(gt: np.ndarray) -> bool: return bool(np.all(gt == -1))
[docs] def trim_str_left(pos: int, ref: str, alt: str) -> tuple[int, str, str]: """Trim identical nucleotides prefixes and adjust position accordingly.""" assert alt and ref, (pos, ref, alt) # noqa PT018 idx = 0 for idx, sequence in enumerate(zip(ref, alt)): # noqa B007 if sequence[0] != sequence[1]: break if ref[idx] == alt[idx]: ref = ref[idx + 1:] alt = alt[idx + 1:] pos += idx + 1 else: ref = ref[idx:] alt = alt[idx:] pos += idx return pos, ref, alt
[docs] def trim_str_right(pos: int, ref: str, alt: str) -> tuple[int, str, str]: """Trim identical nucleotides suffixes and adjust position accordingly.""" assert alt, (pos, ref, alt) assert ref, (pos, ref, alt) idx = 0 for idx, sequence in enumerate(zip(ref[::-1], alt[::-1])): # noqa B007 if sequence[0] != sequence[1]: break # not made simple if ref[-(idx + 1)] == alt[-(idx + 1)]: ref, alt = ref[: -(idx + 1)], alt[: -(idx + 1)] else: if idx == 0: ref, alt = ref[:], alt[:] else: ref, alt = ref[:-idx], alt[:-idx] return pos, ref, alt
[docs] def trim_str_left_right(pos: int, ref: str, alt: str) -> tuple[int, str, str]: if len(ref) == 0 or len(alt) == 0: return pos, ref, alt pos, ref, alt = trim_str_left(pos, ref, alt) if len(ref) == 0 or len(alt) == 0: return pos, ref, alt return trim_str_right(pos, ref, alt)
[docs] def trim_str_right_left(pos: int, ref: str, alt: str) -> tuple[int, str, str]: if len(ref) == 0 or len(alt) == 0: return pos, ref, alt pos, ref, alt = trim_str_right(pos, ref, alt) if len(ref) == 0 or len(alt) == 0: return pos, ref, alt return trim_str_left(pos, ref, alt)
[docs] def trim_parsimonious(pos: int, ref: str, alt: str) -> tuple[int, str, str]: """Trim identical nucleotides on both ends and adjust position.""" assert alt, (pos, ref, alt) assert ref, (pos, ref, alt) r_pos, r_ref, r_alt = trim_str_right(pos, ref, alt) if len(r_ref) == 0: r_alt = alt[:len(r_alt) + 1] r_ref = ref[0:1] assert r_alt[-1] == r_ref[-1] return r_pos, r_ref, r_alt if len(r_alt) == 0: r_ref = ref[:len(r_ref) + 1] r_alt = alt[0:1] assert r_alt[-1] == r_ref[-1] return r_pos, r_ref, r_alt l_pos, l_ref, l_alt = trim_str_left(r_pos, r_ref, r_alt) if len(l_ref) == 0: l_ref = r_alt[-len(l_alt) - 1] l_alt = r_alt[-len(l_alt) - 1:] l_pos -= 1 return l_pos, l_ref, l_alt if len(l_alt) == 0: l_alt = r_ref[-len(l_ref) - 1] l_ref = r_ref[-len(l_ref) - 1:] l_pos -= 1 return l_pos, l_ref, l_alt return l_pos, l_ref, l_alt
[docs] def get_locus_ploidy( chrom: str, pos: int, sex: Sex, genome: ReferenceGenome) -> int: if chrom in ("chrX", "X") and sex == Sex.M and \ not genome.is_pseudoautosomal(chrom, pos): return 1 return 2
[docs] def get_interval_locus_ploidy( chrom: str, pos_start: int, pos_end: int, sex: Sex, genome: ReferenceGenome) -> int: start_ploidy = get_locus_ploidy(chrom, pos_start, sex, genome) end_ploidy = get_locus_ploidy(chrom, pos_end, sex, genome) return max(start_ploidy, end_ploidy)
DNA_COMPLEMENT_NUCLEOTIDES = { "A": "T", "T": "A", "G": "C", "C": "G", }
[docs] def complement(nucleotides: str) -> str: return "".join( [ DNA_COMPLEMENT_NUCLEOTIDES.get(n.upper(), n) for n in nucleotides ])
[docs] def reverse_complement(nucleotides: str) -> str: return complement(nucleotides[::-1])