Annotation Infrastructure

Annotation is an essential step in any genomic analysis. It is the process of assigning attributes or properties to a set of objects that an analyst studies. For example, one can annotate the genetic variants identified in a group of case and control individuals in a genetic study with a prediction of pathogenicity of the variants and estimates for the conservation at the loci of the variants.

GPF has a well-developed infrastructure for annotation of genetic variants. Annotation is carried out when importing studies into the system or through the use of CLI tools. This document will explain how to configure and utilize the annotation infrastructure.

Pipeline configuration

A series of annotations (performed by annotators) is called a “pipeline”. Pipelines are defined through configuration files in the YAML format, in the form of a list of annotators. Each annotator can be additionally configured depending on its type.

Annotators can be written as so:

- <annotator type>:
    setting 1: value
    setting 2: other value
    ...

Some attributes are general and some are annotator specific. General ones include: attributes and input_annotatable

Syntax shortcuts are available, such as:

- <annotator type>

or

- <annotator type>: <resource id>

These short forms however lack the ability to configure the annotator’s settings.

Preamble

Other than a list of annotators, annotation configs can also have a preamble section that holds additional information about the pipeline useful for both human readers and documentation tools.

Below is an example of a pipeline config with a preamble section. Note that the annotators must be placed in a annotators section if a preamble is added.

preamble:
    summary: phyloP hg38 annotation
    description: Annotates with all available HG38 phyloP scores.
    input_reference_genome: hg38/genomes/GRCh38-hg38
    metadata:
        author: Me
        customField: "The metadata section can hold arbitrary key/value pairs - you can put anything here."
        customField2: someCustomValue
        customNestedDictionary:
            key1: value1
annotators:
    - position_score: hg38/scores/phyloP100way
    - position_score: hg38/scores/phyloP30way
    - position_score: hg38/scores/phyloP20way
    - position_score: hg38/scores/phyloP7way

Annotators

This is a list of all available annotators and their settings in the GPF system.

Annotator attribute fields

These are the fields that can be set when configuring an annotator’s attributes.

Setting

Description

source

String. The source from which to take the attribute.

name

String. How the attribute will be labeled in the output annotation.

destination

String. Deprecated variation of name.

internal

Boolean. Whether to discard the attribute when writing the output file. Useful for temporary attributes used to calculate other attributes.

input_annotatable

String. What annotatable object to use instead of the default one read from the input. Used with liftover and normalize allele annotators.

value_transform

String. Python function to evaluate on each value of the attribute. Examples: len(value), value / 10, etc.

Score annotators

The attributes of these annotators generally follow the pattern below:

- source: <source score ID>
  name: <destination attribute name>

The available scores are those configured in the resource used with the score annotator. source is the ID of the score as it is configured in its resource, and name is how it will be labeled in the output annotation.

Aggregators

  • mean

  • median

  • max

  • min

  • mode

  • join (i.e., join(;))

  • list

  • dict

  • concatenate

Position score

Annotate with a position score resource.

- position_score:
    resource_id: <position score resource ID>
    attributes:
    - source: <source score ID>
      name: <destination attribute name>
      position_aggregator: <aggregator to use for INDELs>

NP score

Annotate with a nucleotide polymorphism score resource.

- np_score:
    resource_id: <NP-score resource ID>
    attributes:
    - source: <source score ID>
      name: <destination attribute name>
      position_aggregator: <aggregator to use for INDELs>
      nucleotide_aggregator: <aggregator to use for NPs>

Allele score

Annotate with an allele score resource.

- allele_score:
    resource_id: <allele score resource ID>
    attributes:
    - source: <source score ID>
      name: <destination attribute name>
      position_aggregator: <aggregator to use for INDELs>
      allele_aggregator: <aggregator to use for alleles>

Effect annotator

Predicts the variant’s effect on proteins (i.e. missense, synonymous, LGD, etc.). The attributes the annotator will output are the following:

worst_effect

The worst effect across all transcripts.

gene_effects

Effect types for each gene.

effect_details

Effect details for each affected transcript.

gene_list

List of all genes

3’UTR_gene_list

List of all 3’UTR genes

3’UTR-intron_gene_list

List of all 3’UTR-intron genes

5’UTR_gene_list

List of all 5’UTR genes

5’UTR-intron_gene_list

List of all 5’UTR-intron genes

frame-shift_gene_list

List of all frame-shift genes

intergenic_gene_list

List of all intergenic genes

intron_gene_list

List of all intron genes

missense_gene_list

List of all missense genes

no-frame-shift_gene_list

List of all no-frame-shift genes

no-frame-shift-newStop_gene_list

List of all no-frame-shift-newStop genes

noEnd_gene_list

List of all noEnd genes

noStart_gene_list

List of all noStart genes

non-coding_gene_list

List of all non-coding genes

non-coding-intron_gene_list

List of all non-coding-intron genes

nonsense_gene_list

List of all nonsense genes

splice-site_gene_list

List of all splice-site genes

synonymous_gene_list

List of all synonymous genes

CDS_gene_list

List of all CDS genes

CNV+_gene_list

List of all CNV+ genes

CNV-_gene_list

List of all CNV- genes

coding_gene_list

List of all coding genes

noncoding_gene_list

List of all noncoding genes

CNV_gene_list

List of all CNV genes

LGDs_gene_list

List of all LGD genes

LGD_gene_list (deprecated)

List of all LGD genes

nonsynonymous_gene_list

List of all nonsynonymous genes

UTRs_gene_list

List of all UTRs genes

- effect_annotator:
    genome: <reference genome resource ID>
    gene_models: <gene models resource ID>

Specifying the genome parameter in the configuration is optional - the effect annotator will attempt to get a genome in the following order:

  1. genome parameter in annotator configuration

  2. reference_genome label in provided gene_models resource’s configuration

  3. input_reference_genome field from annotation pipeline config preamble section

  4. Genomic context

Simple effect annotator

Classify an event according to the scheme described in https://pmc.ncbi.nlm.nih.gov/articles/PMC8410909/figure/Fig2/. The attributes the annotator will output are the following:

effect

The worst effect across all transcripts.

genes

The affected genes.

gene_list

List of all genes.

- simple_effect_annotator:
    gene_models: <gene models resource ID>

Liftover annotator

Lifts over a variant from one reference genome to another. The product is an “annotatable” (an object annotators can work on) in the target reference genome. This produced annotatable is labeled liftover_annotatable and can be passed to other annotators using the input_annotatable setting.

- liftover_annotator:
    chain: liftover/hg38ToHg19
    source_genome: hg38/genomes/GRCh38-hg38
    target_genome: hg19/genomes/GATK_ResourceBundle_5777_b37_phiX174
    attributes:
    - source: liftover_annotatable
      name: hg19_annotatable
      internal: true

Specifying the source_genome and target_genome parameters in the configuration is optional - if none are provided, the annotator will attempt to collect them from the provided chain resource’s configuration. Specifically, the chain resource can have source_genome and target_genome labels in its configuration’s meta section.

Normalize allele annotator

Normalize an allele using the algorithm defined here: https://genome.sph.umich.edu/wiki/Variant_Normalization

Similar to the liftover annotator, produces an “annotatable” object called normalized_allele.

- normalize_allele_annotator:
    genome: hg38/genomes/GRCh38-hg38
    attributes:
    - source: normalized_allele
      name: hg38_normalized_annotatable
      internal: true

Gene score annotator

Annotate a variant with a gene score.

- gene_score_annotator:
  resource_id: <gene score resource ID>
  input_gene_list: <gene list to use to match variants (see below)>
  attributes:
  - source: <source score ID>
    name: <destination attribute name>
    gene_aggregator: <aggregator type>

Note

Input gene list is a list of genes that must be present in the annotation context.

Gene lists are produced by the effect annotator, therefore gene score annotation is dependent on an effect annotator being present earlier in the pipeline.

Effect annotators currently provide two gene lists - gene_list and LGD_gene_list.

Gene set annotator

Used to annotate whether a variant belongs to gene sets in a gene set collection.

- gene_set_annotator:
    resource_id: <gene set collection resource ID>
    input_gene_list: <gene list to use to match variants>
    attributes:
      - <gene set name>
      - in_sets

The gene set annotator can output an attribute for every single gene set in a collection along with a special attribute in_sets, which is a list of the names of every gene set that the variant belongs to from the collection.

VEP annotators

There are two annotators which depend on and use the Ensembl Variant Effect Predictor (VEP).

Setting up

Using the Ensembl VEP annotators requires the gpf_vep_annotator conda package to be installed.

mamba install \
    -c conda-forge \
    -c bioconda \
    -c iossifovlab \
    -c defaults \
    gpf_vep_annotator

The VEP annotators can be run only in batch mode.

VEP Full Annotator

Using the full VEP annotator requires a VEP cache to be accessible in the local file system.

Downloading the VEP cache is done with the vep_install tool provided by the ensembl-vep conda package, which comes with gpf_vep_annotator.

Download the cache for hg38.

vep_install -a cf -s homo_sapiens -y GRCh38 -c /output/path/to/cache --convert

The annotator configuration looks like this:

- vep_full_annotator:
    cache_dir: <VEP cache directory>

Full Annotator Output Attributes

The full VEP annotator can output the following attributes:

Location

Location of variant in standard coordinate format (chr:start or chr:start-end)

Allele

The variant allele used to calculate the consequence

Gene

Stable ID of affected gene

Feature

Stable ID of feature

Feature_type

Type of feature - Transcript, RegulatoryFeature or MotifFeature

Consequence

Consequence type

cDNA_position

Relative position of base pair in cDNA sequence

CDS_position

Relative position of base pair in coding sequence

Protein_position

Relative position of amino acid in protein

Amino_acids

Reference and variant amino acids

Codons

Reference and variant codon sequence

Existing_variation

Identifier(s) of co-located known variants

IMPACT

Subjective impact classification of consequence type

DISTANCE

Shortest distance from variant to transcript

STRAND

Strand of the feature (1/-1)

FLAGS

Transcript quality flags

VARIANT_CLASS

SO variant class

SYMBOL

Gene symbol (e.g. HGNC)

SYMBOL_SOURCE

Source of gene symbol

HGNC_ID

Stable identifer of HGNC gene symbol

BIOTYPE

Biotype of transcript or regulatory feature

CANONICAL

Indicates if transcript is canonical for this gene

MANE_SELECT

MANE Select (Matched Annotation from NCBI and EMBL-EBI) Transcript

MANE_PLUS_CLINICAL

MANE Plus Clinical (Matched Annotation from NCBI and EMBL-EBI) Transcript

TSL

Transcript support level

APPRIS

Annotates alternatively spliced transcripts as primary or alternate based on a range of computational methods

CCDS

Indicates if transcript is a CCDS transcript

ENSP

Protein identifer

SWISSPROT

UniProtKB/Swiss-Prot accession

TREMBL

UniProtKB/TrEMBL accession

UNIPARC

UniParc accession

UNIPROT_ISOFORM

Direct mappings to UniProtKB isoforms

GENE_PHENO

Indicates if gene is associated with a phenotype, disease or trait

SIFT

SIFT prediction and/or score

PolyPhen

PolyPhen prediction and/or score

EXON

Exon number(s) / total

INTRON

Intron number(s) / total

DOMAINS

The source and identifer of any overlapping protein domains

miRNA

SO terms of overlapped miRNA secondary structure feature(s)

HGVSc

HGVS coding sequence name

HGVSp

HGVS protein sequence name

HGVS_OFFSET

Indicates by how many bases the HGVS notations for this variant have been shifted

AF

Frequency of existing variant in 1000 Genomes combined population

AFR_AF

Frequency of existing variant in 1000 Genomes combined African population

AMR_AF

Frequency of existing variant in 1000 Genomes combined American population

EAS_AF

Frequency of existing variant in 1000 Genomes combined East Asian population

EUR_AF

Frequency of existing variant in 1000 Genomes combined European population

SAS_AF

Frequency of existing variant in 1000 Genomes combined South Asian population

gnomADe_AF

Frequency of existing variant in gnomAD exomes combined population

gnomADe_AFR_AF

Frequency of existing variant in gnomAD exomes African/American population

gnomADe_AMR_AF

Frequency of existing variant in gnomAD exomes American population

gnomADe_ASJ_AF

Frequency of existing variant in gnomAD exomes Ashkenazi Jewish population

gnomADe_EAS_AF

Frequency of existing variant in gnomAD exomes East Asian population

gnomADe_FIN_AF

Frequency of existing variant in gnomAD exomes Finnish population

gnomADe_NFE_AF

Frequency of existing variant in gnomAD exomes Non-Finnish European population

gnomADe_OTH_AF

Frequency of existing variant in gnomAD exomes other combined populations

gnomADe_SAS_AF

Frequency of existing variant in gnomAD exomes South Asian population

gnomADg_AF

Frequency of existing variant in gnomAD genomes combined population

gnomADg_AFR_AF

Frequency of existing variant in gnomAD genomes African/American population

gnomADg_AMI_AF

Frequency of existing variant in gnomAD genomes Amish population

gnomADg_AMR_AF

Frequency of existing variant in gnomAD genomes American population

gnomADg_ASJ_AF

Frequency of existing variant in gnomAD genomes Ashkenazi Jewish population

gnomADg_EAS_AF

Frequency of existing variant in gnomAD genomes East Asian population

gnomADg_FIN_AF

Frequency of existing variant in gnomAD genomes Finnish population

gnomADg_MID_AF

Frequency of existing variant in gnomAD genomes Mid-eastern population

gnomADg_NFE_AF

Frequency of existing variant in gnomAD genomes Non-Finnish European population

gnomADg_OTH_AF

Frequency of existing variant in gnomAD genomes other combined populations

gnomADg_SAS_AF

Frequency of existing variant in gnomAD genomes South Asian population

MAX_AF

Maximum observed allele frequency in 1000 Genomes, ESP and ExAC/gnomAD

MAX_AF_POPS

Populations in which maximum allele frequency was observed

CLIN_SIG

ClinVar clinical significance of the dbSNP variant

SOMATIC

Somatic status of existing variant

PHENO

Indicates if existing variant(s) is associated with a phenotype, disease or trait; multiple values correspond to multiple variants

PUBMED

Pubmed ID(s) of publications that cite existing variant

MOTIF_NAME

The stable identifier of a transcription factor binding profile (TFBP) aligned at this position

MOTIF_POS

The relative position of the variation in the aligned TFBP

HIGH_INF_POS

A flag indicating if the variant falls in a high information position of the TFBP

MOTIF_SCORE_CHANGE

The difference in motif score of the reference and variant sequences for the TFBP

TRANSCRIPTION_FACTORS

List of transcription factors which bind to the transcription factor binding profile

worst_consequence

Worst consequence reported by VEP

highest_impact

Highest impact reported by VEP

gene_consequence

List of gene consequence pairs reported by VEP

By default, only the following are produced: SYMBOL, Feature, Feature_type, Consequence, worst_consequence, highest_impact, gene_consequence.

VEP Effect Annotator

The VEP effect annotator uses genome and gene model resources to produce its output with VEP. It needs to have a genomic resource repository with the genome and gene models prepared.

- external_vep_gtf_annotator:
    genome: hg38/genomes/GRCh38-hg38
    gene_models: hg38/gene_models/MANE/1.3

Effect Annotator Output Attributes

The VEP effect annotator can output the following attributes:

Location

Location of variant in standard coordinate format (chr:start or chr:start-end)

Allele

The variant allele used to calculate the consequence

Gene

Stable ID of affected gene

Feature

Stable ID of feature

Feature_type

Type of feature - Transcript, RegulatoryFeature or MotifFeature

Consequence

Consequence type

cDNA_position

Relative position of base pair in cDNA sequence

CDS_position

Relative position of base pair in coding sequence

Protein_position

Relative position of amino acid in protein

Amino_acids

Reference and variant amino acids

Codons

Reference and variant codon sequence

Existing_variation

Identifier(s) of co-located known variants

IMPACT

Subjective impact classification of consequence type

DISTANCE

Shortest distance from variant to transcript

STRAND

Strand of the feature (1/-1)

FLAGS

Transcript quality flags

SYMBOL

Gene symbol (e.g. HGNC)

SYMBOL_SOURCE

Source of gene symbol

HGNC_ID

Stable identifer of HGNC gene symbol

SOURCE

Source of transcript

worst_consequence

Worst consequence reported by VEP

highest_impact

Highest impact reported by VEP

gene_consequence

List of gene consequence pairs reported by VEP

<gene model filename>

Value from provided gene models

By default, only the following are produced: SYMBOL, Feature, Feature_type, Consequence, worst_consequence, highest_impact, gene_consequence and the value from the provided gene models.

Running the VEP annotation

With a prepared variants file and annotation.yaml file, the pipeline can be ran using annotate_columns with the –batch-mode flag.

Example annotate_columns run:

annotate_columns ./variants.tsv.gz ./annotation.yaml -w work -o ./out.tsv -v -j 4 --batch-mode --col-chrom CHROM --col-pos POS --col-ref REF -r 10000 --col-alt ALT --allow-repeated-attributes

Command line tools

Three annotation tools are provided with GPF - annotate_columns, annotate_vcf and annotate_schema2_parquet. Each of these handles a different format, but apart from some differences in the arguments that can be passed, they work in a similar way. Across all three, input data and a pipeline configuration file are the mandatory arguments that must be provided. Additionally, a number of optional arguments exist, which can be used to modify much of the behaviour of these tools.

All three tools are capable of parallelizing their workload, and will attempt to do so by default.

Also provided is the annotate_doc tool, which produces a human-readable HTML document from a given pipeline configuration. The purpose of this HTML document is to display the pipeline in an easy-to-read layout.

Notes on usage

  • When parallelizing is used, a directory for storing task flags and task logs will be created in your working directory. If you wish to re-run the annotation, it is necessary to remove this directory as the flags inside it will prevent the tasks from running.

  • The option to reannotate data is provided. This is useful when you wish to modify only specific columns of an already annotated piece of data - for example to update a score column whose score resource has received a new version. To carry this out in the annotate_columns and annotate_vcf tools, you will have to use to provide the old annotation pipeline through the --reannotate flag. For annotate_schema2_parquet, this is done automatically, as the annotation pipeline is stored in its metadata.

  • The option to allow repeated attributes is provided with the --allow-repeated-attributes (short form -ar) flag. With this flag, the annotation pipeline will append the annotator ID (typically A<index of annotator in the pipeline config>), e.g. A0, A1) to the attribute’s name. For example, a repeating attribute called my_score will appear in the output as my_score_A0, my_score_A1, and so on.

annotate_columns

This tool is used to annotate DSV (delimiter-separated values) formats - CSV, TSV, etc. It expects a header to be provided, from which it will attempt to identify relevant columns - chromosome, position, reference, alternative, etc. If the file has been indexed using Tabix, the tool will parallelize its workload by splitting it into tasks by region size.

Example usage of annotate_columns

$ annotate_columns.py input.tsv annotation.yaml

Options for annotate_columns

$ annotate_columns --help
usage: annotate_columns [-h] [-r REGION_SIZE] [-w WORK_DIR] [-o OUTPUT]
                        [-in-sep INPUT_SEPARATOR] [-out-sep OUTPUT_SEPARATOR]
                        [--reannotate REANNOTATE] [--batch-mode] [-ar]
                        [-g GRR_FILENAME] [--grr-directory GRR_DIRECTORY]
                        [-R REFERENCE_GENOME_RESOURCE_ID]
                        [-G GENE_MODELS_RESOURCE_ID] [--col-ref COL_REF]
                        [--col-location COL_LOCATION] [--col-chrom COL_CHROM]
                        [--col-pos-end COL_POS_END]
                        [--col-vcf-like COL_VCF_LIKE]
                        [--col-pos-beg COL_POS_BEG] [--col-pos COL_POS]
                        [--col-cnv-type COL_CNV_TYPE]
                        [--col-variant COL_VARIANT] [--col-alt COL_ALT]
                        [-j JOBS] [-N DASK_CLUSTER_NAME]
                        [-c DASK_CLUSTER_CONFIG_FILE]
                        [--tasks-log-dir LOG_DIR] [-t TASK_IDS [TASK_IDS ...]]
                        [--keep-going] [--force] [-d TASK_STATUS_DIR]
                        [--verbose]
                        [input] [pipeline] [{run,list,status}]

Annotate columns

positional arguments:
  input                 the input column file (default: -)
  pipeline              The pipeline definition file. By default, or if the
                        value is gpf_instance, the annotation pipeline from
                        the configured gpf instance will be used. (default:
                        context)

options:
  -h, --help            show this help message and exit
  -r REGION_SIZE, --region-size REGION_SIZE
                        region size to parallelize by (default: 300000000)
  -w WORK_DIR, --work-dir WORK_DIR
                        Directory to store intermediate output files in
                        (default: annotate_columns_output)
  -o OUTPUT, --output OUTPUT
                        Filename of the output result (default: None)
  -in-sep INPUT_SEPARATOR, --input-separator INPUT_SEPARATOR
                        The column separator in the input (default: )
  -out-sep OUTPUT_SEPARATOR, --output-separator OUTPUT_SEPARATOR
                        The column separator in the output (default: )
  --reannotate REANNOTATE
                        Old pipeline config to reannotate over (default: None)
  --batch-mode
  -ar, --allow-repeated-attributes
                        Rename repeated attributes instead of raising an
                        error. (default: False)
  -g GRR_FILENAME, --grr-filename GRR_FILENAME, --grr GRR_FILENAME
                        The GRR configuration file. If the argument is absent,
                        the a GRR repository from the current genomic context
                        (i.e. gpf_instance) will be used or, if that fails,
                        the default GRR configuration will be used. (default:
                        None)
  --grr-directory GRR_DIRECTORY
                        Local GRR directory to use as repository. (default:
                        None)
  -R REFERENCE_GENOME_RESOURCE_ID, --reference-genome-resource-id REFERENCE_GENOME_RESOURCE_ID, --ref REFERENCE_GENOME_RESOURCE_ID
                        The resource id for the reference genome. If the
                        argument is absent the reference genome from the
                        current genomic context will be used. (default: None)
  -G GENE_MODELS_RESOURCE_ID, --gene-models-resource-id GENE_MODELS_RESOURCE_ID, --genes GENE_MODELS_RESOURCE_ID
                        The resource is of the gene models resource. If the
                        argument is absent the gene models from the current
                        genomic context will be used. (default: None)
  --col-ref COL_REF     The column name that stores ref (default: ref)
  --col-location COL_LOCATION
                        The column name that stores location (default:
                        location)
  --col-chrom COL_CHROM
                        The column name that stores chrom (default: chrom)
  --col-pos-end COL_POS_END
                        The column name that stores pos_end (default: pos_end)
  --col-vcf-like COL_VCF_LIKE
                        The column name that stores vcf_like (default:
                        vcf_like)
  --col-pos-beg COL_POS_BEG
                        The column name that stores pos_beg (default: pos_beg)
  --col-pos COL_POS     The column name that stores pos (default: pos)
  --col-cnv-type COL_CNV_TYPE
                        The column name that stores cnv_type (default:
                        cnv_type)
  --col-variant COL_VARIANT
                        The column name that stores variant (default: variant)
  --col-alt COL_ALT     The column name that stores alt (default: alt)
  --verbose, -v, -V

Task Graph Executor:
  -j JOBS, --jobs JOBS  Number of jobs to run in parallel. Defaults to the
                        number of processors on the machine (default: None)
  -N DASK_CLUSTER_NAME, --dask-cluster-name DASK_CLUSTER_NAME, --dcn DASK_CLUSTER_NAME
                        The named of the named dask cluster (default: None)
  -c DASK_CLUSTER_CONFIG_FILE, --dccf DASK_CLUSTER_CONFIG_FILE, --dask-cluster-config-file DASK_CLUSTER_CONFIG_FILE
                        dask cluster config file (default: None)
  --tasks-log-dir LOG_DIR
                        Path to directory where to store tasks' logs (default:
                        ./.task-log)

Execution Mode:
  {run,list,status}     Command to execute on the import configuration. run -
                        runs the import process list - lists the tasks to be
                        executed but doesn't run them status - synonym for
                        list (default: run)
  -t TASK_IDS [TASK_IDS ...], --task-ids TASK_IDS [TASK_IDS ...]
  --keep-going          Whether or not to keep executing in case of an error
                        (default: False)
  --force, -f           Ignore precomputed state and always rerun all tasks.
                        (default: False)
  -d TASK_STATUS_DIR, --task-status-dir TASK_STATUS_DIR, --tsd TASK_STATUS_DIR
                        Directory to store the task progress. (default: .)

annotate_vcf

This tool is used to annotate files in the VCF format. If the file has been indexed using Tabix, the tool will parallelize its workload by splitting it into tasks by region size.

Example usage of annotate_vcf

$ annotate_vcf.py input.vcf.gz annotation.yaml

Options for annotate_vcf

$ annotate_vcf --help
usage: annotate_vcf [-h] [-r REGION_SIZE] [-w WORK_DIR] [-o OUTPUT]
                    [--reannotate REANNOTATE] [-ar] [-g GRR_FILENAME]
                    [--grr-directory GRR_DIRECTORY]
                    [-R REFERENCE_GENOME_RESOURCE_ID]
                    [-G GENE_MODELS_RESOURCE_ID] [-j JOBS]
                    [-N DASK_CLUSTER_NAME] [-c DASK_CLUSTER_CONFIG_FILE]
                    [--tasks-log-dir LOG_DIR] [-t TASK_IDS [TASK_IDS ...]]
                    [--keep-going] [--force] [-d TASK_STATUS_DIR] [--verbose]
                    [input] [pipeline] [{run,list,status}]

Annotate VCF

positional arguments:
  input                 the input vcf file (default: -)
  pipeline              The pipeline definition file. By default, or if the
                        value is gpf_instance, the annotation pipeline from
                        the configured gpf instance will be used. (default:
                        context)

options:
  -h, --help            show this help message and exit
  -r REGION_SIZE, --region-size REGION_SIZE
                        region size to parallelize by (default: 300000000)
  -w WORK_DIR, --work-dir WORK_DIR
                        Directory to store intermediate output files (default:
                        annotate_vcf_output)
  -o OUTPUT, --output OUTPUT
                        Filename of the output VCF result (default: None)
  --reannotate REANNOTATE
                        Old pipeline config to reannotate over (default: None)
  -ar, --allow-repeated-attributes
                        Rename repeated attributes instead of raising an
                        error. (default: False)
  -g GRR_FILENAME, --grr-filename GRR_FILENAME, --grr GRR_FILENAME
                        The GRR configuration file. If the argument is absent,
                        the a GRR repository from the current genomic context
                        (i.e. gpf_instance) will be used or, if that fails,
                        the default GRR configuration will be used. (default:
                        None)
  --grr-directory GRR_DIRECTORY
                        Local GRR directory to use as repository. (default:
                        None)
  -R REFERENCE_GENOME_RESOURCE_ID, --reference-genome-resource-id REFERENCE_GENOME_RESOURCE_ID, --ref REFERENCE_GENOME_RESOURCE_ID
                        The resource id for the reference genome. If the
                        argument is absent the reference genome from the
                        current genomic context will be used. (default: None)
  -G GENE_MODELS_RESOURCE_ID, --gene-models-resource-id GENE_MODELS_RESOURCE_ID, --genes GENE_MODELS_RESOURCE_ID
                        The resource is of the gene models resource. If the
                        argument is absent the gene models from the current
                        genomic context will be used. (default: None)
  --verbose, -v, -V

Task Graph Executor:
  -j JOBS, --jobs JOBS  Number of jobs to run in parallel. Defaults to the
                        number of processors on the machine (default: None)
  -N DASK_CLUSTER_NAME, --dask-cluster-name DASK_CLUSTER_NAME, --dcn DASK_CLUSTER_NAME
                        The named of the named dask cluster (default: None)
  -c DASK_CLUSTER_CONFIG_FILE, --dccf DASK_CLUSTER_CONFIG_FILE, --dask-cluster-config-file DASK_CLUSTER_CONFIG_FILE
                        dask cluster config file (default: None)
  --tasks-log-dir LOG_DIR
                        Path to directory where to store tasks' logs (default:
                        ./.task-log)

Execution Mode:
  {run,list,status}     Command to execute on the import configuration. run -
                        runs the import process list - lists the tasks to be
                        executed but doesn't run them status - synonym for
                        list (default: run)
  -t TASK_IDS [TASK_IDS ...], --task-ids TASK_IDS [TASK_IDS ...]
  --keep-going          Whether or not to keep executing in case of an error
                        (default: False)
  --force, -f           Ignore precomputed state and always rerun all tasks.
                        (default: False)
  -d TASK_STATUS_DIR, --task-status-dir TASK_STATUS_DIR, --tsd TASK_STATUS_DIR
                        Directory to store the task progress. (default: .)

annotate_schema2_parquet

This tool is used to annotate Parquet datasets partitioned according to GPF’s schema2 format. It expects a directory of the dataset as input. The tool will always parallelize the annotation, unless explicitly disabled using the -j 1 argument.

Unlike the other tools, reannotation will be carried out automatically if a previous annotation is detected in the dataset.

Example usage of annotate_schema2_parquet

$ annotate_schema2_parquet.py input_parquet_dir annotation.yaml

Options for annotate_schema2_parquet

$ annotate_schema2_parquet --help
usage: annotate_schema2_parquet [-h] [-r REGION] [-s REGION_SIZE]
                                [-w WORK_DIR] [-i] [-o OUTPUT | -e | -m] [-ar]
                                [-g GRR_FILENAME]
                                [--grr-directory GRR_DIRECTORY]
                                [-R REFERENCE_GENOME_RESOURCE_ID]
                                [-G GENE_MODELS_RESOURCE_ID] [-j JOBS]
                                [-N DASK_CLUSTER_NAME]
                                [-c DASK_CLUSTER_CONFIG_FILE]
                                [--tasks-log-dir LOG_DIR]
                                [-t TASK_IDS [TASK_IDS ...]] [--keep-going]
                                [--force] [-d TASK_STATUS_DIR] [--verbose]
                                [input] [pipeline] [{run,list,status}]

Annotate Schema2 Parquet

positional arguments:
  input                 the directory containing Parquet files (default: -)
  pipeline              The pipeline definition file. By default, or if the
                        value is gpf_instance, the annotation pipeline from
                        the configured gpf instance will be used. (default:
                        context)

options:
  -h, --help            show this help message and exit
  -r REGION, --region REGION
                        annotate only a specific region (default: None)
  -s REGION_SIZE, --region-size REGION_SIZE
                        region size to parallelize by (default: 300000000)
  -w WORK_DIR, --work-dir WORK_DIR
                        Directory to store intermediate output files in
                        (default: annotate_schema2_output)
  -i, --full-reannotation
                        Ignore any previous annotation and run a full
                        reannotation. (default: False)
  -o OUTPUT, --output OUTPUT
                        Path of the directory to hold the output (default:
                        None)
  -e, --in-place        Produce output directly in given input dir. (default:
                        False)
  -m, --meta            Print the input Parquet's meta properties. (default:
                        False)
  -ar, --allow-repeated-attributes
                        Rename repeated attributes instead of raising an
                        error. (default: False)
  -g GRR_FILENAME, --grr-filename GRR_FILENAME, --grr GRR_FILENAME
                        The GRR configuration file. If the argument is absent,
                        the a GRR repository from the current genomic context
                        (i.e. gpf_instance) will be used or, if that fails,
                        the default GRR configuration will be used. (default:
                        None)
  --grr-directory GRR_DIRECTORY
                        Local GRR directory to use as repository. (default:
                        None)
  -R REFERENCE_GENOME_RESOURCE_ID, --reference-genome-resource-id REFERENCE_GENOME_RESOURCE_ID, --ref REFERENCE_GENOME_RESOURCE_ID
                        The resource id for the reference genome. If the
                        argument is absent the reference genome from the
                        current genomic context will be used. (default: None)
  -G GENE_MODELS_RESOURCE_ID, --gene-models-resource-id GENE_MODELS_RESOURCE_ID, --genes GENE_MODELS_RESOURCE_ID
                        The resource is of the gene models resource. If the
                        argument is absent the gene models from the current
                        genomic context will be used. (default: None)
  --verbose, -v, -V

Task Graph Executor:
  -j JOBS, --jobs JOBS  Number of jobs to run in parallel. Defaults to the
                        number of processors on the machine (default: None)
  -N DASK_CLUSTER_NAME, --dask-cluster-name DASK_CLUSTER_NAME, --dcn DASK_CLUSTER_NAME
                        The named of the named dask cluster (default: None)
  -c DASK_CLUSTER_CONFIG_FILE, --dccf DASK_CLUSTER_CONFIG_FILE, --dask-cluster-config-file DASK_CLUSTER_CONFIG_FILE
                        dask cluster config file (default: None)
  --tasks-log-dir LOG_DIR
                        Path to directory where to store tasks' logs (default:
                        ./.task-log)

Execution Mode:
  {run,list,status}     Command to execute on the import configuration. run -
                        runs the import process list - lists the tasks to be
                        executed but doesn't run them status - synonym for
                        list (default: run)
  -t TASK_IDS [TASK_IDS ...], --task-ids TASK_IDS [TASK_IDS ...]
  --keep-going          Whether or not to keep executing in case of an error
                        (default: False)
  --force, -f           Ignore precomputed state and always rerun all tasks.
                        (default: False)
  -d TASK_STATUS_DIR, --task-status-dir TASK_STATUS_DIR, --tsd TASK_STATUS_DIR
                        Directory to store the task progress. (default: .)

annotate_doc

Produce an HTML file describing the provided pipeline.

Example usage of annotate_doc

$ annotate_doc.py annotation.yaml

Options for annotate_doc

$ annotate_doc --help
usage: annotate_doc [-h] [-o OUTPUT] [-ar] [-g GRR_FILENAME]
                    [--grr-directory GRR_DIRECTORY]
                    [-R REFERENCE_GENOME_RESOURCE_ID]
                    [-G GENE_MODELS_RESOURCE_ID] [--verbose]
                    [pipeline]

Annotate columns

positional arguments:
  pipeline              The pipeline definition file. By default, or if the
                        value is gpf_instance, the annotation pipeline from
                        the configured gpf instance will be used. (default:
                        context)

options:
  -h, --help            show this help message and exit
  -o OUTPUT, --output OUTPUT
                        Filename of the output VCF result (default: None)
  -ar, --allow-repeated-attributes
                        Rename repeated attributes instead of raising an
                        error. (default: False)
  -g GRR_FILENAME, --grr-filename GRR_FILENAME, --grr GRR_FILENAME
                        The GRR configuration file. If the argument is absent,
                        the a GRR repository from the current genomic context
                        (i.e. gpf_instance) will be used or, if that fails,
                        the default GRR configuration will be used. (default:
                        None)
  --grr-directory GRR_DIRECTORY
                        Local GRR directory to use as repository. (default:
                        None)
  -R REFERENCE_GENOME_RESOURCE_ID, --reference-genome-resource-id REFERENCE_GENOME_RESOURCE_ID, --ref REFERENCE_GENOME_RESOURCE_ID
                        The resource id for the reference genome. If the
                        argument is absent the reference genome from the
                        current genomic context will be used. (default: None)
  -G GENE_MODELS_RESOURCE_ID, --gene-models-resource-id GENE_MODELS_RESOURCE_ID, --genes GENE_MODELS_RESOURCE_ID
                        The resource is of the gene models resource. If the
                        argument is absent the gene models from the current
                        genomic context will be used. (default: None)
  --verbose, -v, -V

Example annotations

How to annotate variants with ClinVar

For this example, we’ll assume that you have a GRR repository with the ClinVar score resource. We’ll use a small list of de Novo variants saved as denovo-variants.tsv:

CHROM   POS       REF    ALT
chr14   21403214  T      C
chr14   21431459  G      C
chr14   21391016  A      AT
chr14   21403019  G      A
chr14   21402010  G      A
chr14   21393484  TCTTC  T

Note

The example variants can be downloaded from here: denovo-variants.tsv.

Let us create an annotation configuration stored as clinvar-annotation.yaml:

- allele_score: hg38/scores/clinvar_20221105

Run the annotate_columns tool:

annotate_columns --grr ./grr_definition.yaml \
    --col_pos POS --col_chrom CHROM --col_ref REF --col_alt ALT \
    denovo-variants.tsv clinvar_annotation.yaml

How to annotate with gene score annotators

For this example we will reuse the denovo_variants.tsv from the previous example.

Create an annotation.yaml config with the following contents:

- effect_annotator:
    gene_models: hg38/gene_models/refSeq_v20200330
    genome: hg38/genomes/GRCh38-hg38
- gene_score_annotator:
    resource_id: gene_properties/gene_scores/SFARI_gene_score
    input_gene_list: gene_list
    attributes:
    - source: "SFARI gene score"
      name: SFARI_gene_score

As mentioned before, when setting up gene score annotators, we need to have a gene list in the annotation context. The gene list is provided by the effect annotator preceding the gene score annotator.

Next, run the annotate_columns tool:

annotate_columns --grr ./grr_definition.yaml \
    --col_pos POS --col_chrom CHROM --col_ref REF --col_alt ALT \
    denovo-variants.tsv annotation.yaml

Gene score annotator with changed aggregator

- effect_annotator:
    gene_models: hg38/gene_models/refSeq_v20200330
    genome: hg38/genomes/GRCh38-hg38
- gene_score_annotator:
    resource_id: gene_properties/gene_scores/pLI
    input_gene_list: gene_list
    attributes:
    - source: pLI
      gene_aggregator: max

How to annotate with gene set annotators

- effect_annotator:
    gene_models: hg38/gene_models/refSeq_v20200330
    genome: hg38/genomes/GRCh38-hg38
- gene_set_annotator:
    resource_id: gene_properties/gene_sets/autism
    gene_set_id: autism candidates from Iossifov PNAS 2015
    input_gene_list: gene_list

Simple position score annotation

- position_score: hg38/scores/phyloP7way

Effect annotator with default resources

- position_score: hg38/scores/phyloP7way
- effect_annotator

This effect annotator will use the reference genome and gene models from the active GPF instance or from CLI parameters such as:

--ref hg38/genomes/GRCh38-hg38 --genes hg38/gene_models/refSeq_v20200330

Liftover annotation

- position_score: hg38/scores/phyloP100way

- liftover_annotator:
    chain: liftover/hg38ToHg19
    source_genome: hg38/genomes/GRCh38-hg38
    target_genome: hg19/genomes/GATK_ResourceBundle_5777_b37_phiX174
    attributes:
    - source: liftover_annotatable
      name: hg19_annotatable
      internal: true

- position_score:
    resource_id: hg19/scores/FitCons-i6-merged
    input_annotatable: hg19_annotatable